skip to main content


Search for: All records

Creators/Authors contains: "Gokirmak, Ali"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We characterized resistance drift in phase change memory devices in the 80 K to 300 K temperature range by performing measurements on 20 nm thick, ∼70–100 nm wide lateral Ge2Sb2Te5(GST) line cells. The cells were amorphized using 1.5–2.5 V pulses with ∼50–100 ns duration leading to ∼0.4–1.1 mA peak reset currents resulting in amorphized lengths between ∼50 and 700 nm. Resistance drift coefficients in the amorphized cells are calculated using constant voltage measurements starting as fast as within a second after amorphization and for 1 h duration. Drift coefficients range between ∼0.02 and 0.1 with significant device-to-device variability and variations during the measurement period. At lower temperatures (higher resistance states) some devices show a complex dynamic behavior, with the resistance repeatedly increasing and decreasing significantly over periods in the order of seconds. These results point to charge trapping and de-trapping events as the cause of resistance drift.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. We model the current density in a semiconductor based on the drift-diffusion transport of the charge carriers to accurately determine the thermoelectric effects in the bulk material (Thomson effect) and material junctions (Peltier effect). We utilize the model to perform 2-D finite element simulations of mushroom phase change memory cell with a critical dimension of 20 nm using temperature and electric field dependent material parameters and analyze the contributions of symmetric Joule heating and asymmetric thermoelectric heats during reset and set operations. We investigate the effect of altering the direction of current flow by changing the connection point between the cell and the access device and observe that, corresponding change in thermoelectric effects cause significant difference in operation dynamics, temperature distribution profiles, amorphous volume, energy requirement and resistance contrast between reset and set states. 
    more » « less
  3. Narrow-channel accumulated body nMOSFET devices with p-type side gates surrounding the active area have been electrically characterized between 100 and 400 K with varied side-gate biasing ( Vside ). The subthreshold slope (SS) and drain induced barrier lowering (DIBL) decrease and threshold voltage ( Vt ) increases linearly with reduced temperature and reduced side-gate bias. Detailed analysis on a 27 nm × 78 nm (width × length) device shows SS decreasing from 115 mV/dec at 400 K to 90 mV/dec at 300 K and down to 36 mV/dec at 100 K, DIBL decreasing by approximately 10 mV/V for each 100 K reduction in operating temperature, and Vt increasing from 0.42 to 0.61 V as the temperature is reduced from 400 to 100 K. Vt can be adjusted from ∼ 0.3 to ∼ 1.1 V with ∼ 0.3 V/V sensitivity by depletion or accumulation of the body of the device using Vside . This high level of tunability allows electronic control of Vt and drive current for variable temperature operation in a wide temperature range with extremely low leakage currents ( < 10 −13 A). 
    more » « less
  4. We calculate critical electronic conduction parameters of the amorphous phase of Ge 2 Sb 2 Te 5 (GST), a common material used in phase change memory. We estimate the room temperature bandgap of metastable amorphous GST to be E g (300K) = 1.84 eV based on a temperature dependent energy band model. We estimate the free carrier concentration at the melting temperature utilizing the latent heat of fusion to be 1.47 x 10 22 cm -3 . Using the thin film melt resistivity, we calculate the carrier mobility at melting point as 0.187 cm 2 /V-s. Assuming that metastable amorphous GST is a supercooled liquid with bipolar conduction, we compute the total carrier concentration as a function of temperature and estimate the room temperature free carrier concentration as p(300K) ≈ n(300K) = 1.69×10 17 cm -3 . Free electrons and holes are expected to recombine over time and the stable (drifted) amorphous GST is estimated to have p-type conduction with p(300K) ≈ 6×10 16 cm -3 . 
    more » « less
  5. null (Ed.)
  6.  
    more » « less
  7. Phase change memory (PCM) is a high speed, high endurance, high density non-volatile memory technology that utilizes chalcogenide materials such as Ge 2 Sb 2 Te 5 (GST) that can be electrically cycled between highly resistive amorphous and low resistance crystalline phases. The resistance of the amorphous phase of PCM cells increase (drift) in time following a power law [1] , which increases the memory window in time but limits in the implementation of multi-bit-per-cell PCM. There has been a number of theories explaining the origin of drift [1] - [4] , mostly attributing it to structural relaxation, a thermally activated rearrangement of atoms in the amorphous structure [2] . Most of the studies on resistance drift are based on experiments at or above room temperature, where multiple processes may be occurring simultaneously. In this work, we melt-quenched amorphized GST line cells with widths ~120-140 nm, lengths ~390-500 nm, and thickness ~50nm ( Fig. 1 ) and monitored the current-voltage (I-V) characteristics using a parameter analyzer ( Fig. 2 ) in 85 K to 350 K range. We extracted the drift co-efficient from the slope of the resistance vs. time plots (using low-voltage measurements) and observed resistance drift in the 125 K -300 K temperature range ( Fig. 3 ). We found an approximately linear increase in drift coefficient as a function of temperature from ~ 0.07 at 125 K to ~ 0.11 at 200 K and approximately constant drift coefficients in the 200 K to 300 K range ( Fig. 3 inset). These results suggest that structural relaxations alone cannot account for resistance drift, additional mechanisms are contributing to this phenomenon [5] , [6] . 
    more » « less